
RAPID COMMUNICATIONS

PHYSICAL REVIEW E OCTOBER 1998VOLUME 58, NUMBER 4
Quenched disorder enhances chaotic diffusion
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~Received 28 May 1998!

We show that chaotic diffusion of a single particle moving on a one-dimensional rough surface is enhanced
by a small amount of spatial quenched disorder. In addition to enhanced diffusion we also find that there is a
crossover from expanding to bounded motion. The crossover time to bounded motion decreases with increas-
ing disorder, and there exists a threshold value of disorder above which chaotic motion is completely sup-
pressed.@S1063-651X~98!50210-3#

PACS number~s!: 81.40.Pq, 46.30.Pa, 05.45.1b
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Understanding the effects of surface roughness on fric
is a long standing and challenging problem@1,2#. For mac-
roscopic systems, a rough interface is usually associated
an increase in friction due to asperities@2#. However, it has
been recently suggested@3# that on an atomic scale this ma
not be always the case, and that friction can decrease
increased roughness of the surface. Motivated by this ob
vation, in the present work we study the effects of substr
randomness on the chaotic diffusive motion of a particle
one dimension. Since the friction coefficient is related to
diffusion coefficient, studies on the effects of the randomn
on chaotic diffusion will result in a better understanding
friction.

Diffusion is observed in many types of deterministic a
stochastic systems that exhibit a wide variety of dynam
behaviors@4–13#. In deterministic chaotic systems, diffusio
can be normal@4,13#, with the mean-square displaceme
^x2& proportional to timet(^x2&;t), anomalous@5,7,12#,
with ^x2&;tg, ~enhanced forg.2, dispersive forg,2! or
have a logarithmic time dependence (g50) @6,14#.

Among the simplest dynamical systems in which chao
diffusion can be observed are one-dimensional iterated m
of the form

xn115xn1F~xn!. ~1!

Studies of both normal and anomalous chaotic diffusion
such maps@with additional restrictions onF(x) such as pe-
riodicity and reflection symmetry with respect tox→2x#
were motivated by the assumption that they capture the
sential features of driven, damped diffusive motion in a p
riodic potential@4,7,12,14#. In many cases the simple form o
these maps has made possible both large scale nume
simulations and analytical calculations of transport prop
ties @4–8,12#. Little is known, however, about the effects o
quenched spatial disorder on motion in otherwise perio
potentials.

In this work we report on an unusual effect that occurs
the case of continuous-time systems, namely, an increas
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diffusion induced by the presence of a small amount
quenched disorder. For the parameter range considered
phenomenon is only observed at low amounts of disord
and above a certain threshold the chaotic diffusion is s
pressed.

We consider the one-dimensional motion of a particle~in
dimensionless units! on a disordered substrate:

d2x

dt2
1g

dx

dt
1sin~x!5G sin~vt !1aj~x!. ~2!

Here,g is the damping coefficient,G andv are, respectively,
the amplitude and frequency of an oscillatory forcing, a
aj(x) is the force due to the quenched disorder. For
present study,j(x)P@21,1# are independent, uniformly dis
tributed random variables with no spatial correlations cor
sponding to a piecewise constant force on the inter
†2kp,2(k11)p…, kPZ, and a is the amount of quenche
disorder. Our interest in Eq.~2! is motivated by the fact tha
it can serve as a simplistic model for the systems studie
quartz microbalance experiments@15#. Clearly, the dynamics
of a sliding monolayer is far more complicated than the d
namics of a single particle. However, for a weak substr
potential and at low coverages, the dynamics of a sin
particle can provide valuable insight into the motion of
monolayer on a rough surface. Indeed, phenomenolog
models @16,17# describing surface force apparatus expe
ments on confined liquids@18,19# have revealed importan
properties of the dynamics of the liquid into consideration

It has recently been shown@13# that in the absence o
quenched disorder (a50) normal diffusion is generated in
both the chaotic and intermittent regimes of Eq.~2!. The
presence of quenched disorder (aÞ0) is assumed to intro-
duce a more realistic representation of a substrate. Du
this spatial randomness, the periodicity and symmetry of
unperturbed potential are destroyed. Figure 1 shows a typ
landscape of the resultant disordered potential,

Ũ~x!52cos~x!2aE
0

x

j~y!dy. ~3!

Since quenched disorder modifies the potential, it is na
ral to ask how it affects chaotic diffusion. The comple
structure of the dynamical phase space corresponding to
~2! in the absence of disorder@13,20# indicates the impor-

e-
e

R4057 © 1998 The American Physical Society



c
t

st

er

-

ding
the
the
ory
cha-

e

di

or

for

rical
ye.
in-
nc-
s of

to

RAPID COMMUNICATIONS

R4058 PRE 58POPESCU, BRAIMAN, FAMILY, AND HENTSCHEL
tance of properly choosing a region in parameter spa
Thus, as a necessary first step, we have identified a se
parameters where, in the absence of disorder, the sy
shows chaotic diffusion. Specifically, we selectedg50.2,
G51.2, andv50.3. We note that simulations done for oth
sets of parameters~for example, the ones in Ref.@13#! have
shown the same qualitative features.

Numerical solutions of Eq.~2! were obtained using a vari
able step Runge-Kutta-Fehlberg method@21#. Figure 2

FIG. 1. Typical landscape of the disordered potential in Eq.~3!
for a51021. Note that the motion toward right~left! is more fa-
vorable atA ~C!, while atB the potential barrier is almost the sam
for both directions.

FIG. 2. Characteristic time series for the displacement of a
fusing particle described by Eq.~2! for g50.2,G51.2,v50.3, and
~a! a50, ~b! a51021. The two curves in~b! correspond to differ-
ent initial conditions and different realizations of quenched dis
der.
e.
of

em

shows typical results for the displacementx(t) for the cases
~a! a50 ~no disorder!, and ~b! a51021. In the case of
nonzero disorder we observe both trapped and expan
trajectories, depending on the initial conditions and on
specific realization of disorder; in the absence of disorder
trajectories are not trapped. This trapping of the traject
inside a bounded region of phase space is one of the me

f-

-

FIG. 3. Mean-square displacement as a function of time
several values of the amount of quenched disorder parametera. The
parameters used in Eq.~2! areg50.2, G51.2, andv50.3.

FIG. 4. ~a! Diffusion coefficient D(a) as a function of the
amount of quenched disorder; the points are results of the nume
simulations, the line is a cubic-spline interpolation to guide the e
The inset shows the region where the diffusion coefficient is
creased by disorder.~b! Percentage of trapped trajectories as a fu
tion of the amount of quenched disorder; the points are result
the numerical simulations, the line is a cubic-spline interpolation
guide the eye. The parameters are the same as in Fig. 2.
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nisms through which quenched disorder affects the trans
properties.

To calculate the mean-square displacement^x2(t)&, aver-
ages were performed over ensembles of 5000 trajecto
starting from a very small cluster of different initial cond
tions centered around the origin (x50, ẋ50! of the phase
space. For each trajectory a different random sequencej(x)
was generated. In this way, the average over the ensemb
trajectories also includes an average over realizations of
order. The ensemble described above was left to evolve
;9400 external drive periods, while trajectories localized
a ‘‘trap’’ for a time longer than 750 external drive period
were not included in the averaging process. Therefore,
average mean-square displacement was computed only
the trajectories that were not trapped during the integra
time period.

Figure 3 shows results for̂x2(t)&/2t as a function of the
time t for several values of disorder parametera. At long
times the above ratio tends to a constant value,D(a), indi-
cating that the quenched disorder does not change the no
character of the diffusion. We observe thatD(a) is larger for
a50.05 than fora50, i.e., small amounts of disorder in
crease the diffusion coefficient by approximately 15%@see
inset in Fig. 4~a!#. Higher values of disorder, however, lea
to a smallerD(a).

We have also followed the center of mass dynamics.
the entire range of realizations of the disorder conside
there was no translational motion of the center of mass.
though on short length-scales there was a net current ind
by disorder, the large-scale average of this current is z
since the large-scale average of disorder is a ‘‘flat’’ substr
and the transport is by simple diffusion.

Figure 4~a! shows the diffusion coefficientsD(a)
5limt→`(^x2&/2t) in the long-time limit as a function of the
amount of quenched disorder. These results show that in
rangea,0.1 there is an increase in diffusion when com
pared to the diffusion on the periodic, unperturbed surf
J.
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~see inset!. At higher levels of disorder, the diffusion coeffi
cient decreases toward zero. This decrease, correlated
the increase in the trapping probability shown in Fig. 4~b!,
indicates a crossover from expanding to bounded motion
duced by the quenched disorder. The decrease in diffu
coefficient with increasing disorder is an expected res
@8,9#. In our simulations, however, we first observe an
crease of the diffusion coefficient with disorder, and on
when the amount of disorder exceedsa50.1, the decrease o
the diffusion coefficient is observed.

An analysis of the trajectories of Eq.~2! indicates that the
spatial evolution of the statistical ensemble is similar to
case of Gaussian~stochastic! diffusion. We believe that in
our simulations a small amount of quenched disorder can
as a source of thermal noise and increases the escape rat
addition, introduction of a small amount of quenched dis
der causes a spatial symmetry breaking that could also
to an increase in the escape rates and, consequently, in
diffusion coefficient. This behavior resembles other kno
systems, such as thermal ratchets@9#, kink diffusion @22#,
and stochastic diffusion with external linear bias@23#, where
disordered enhanced diffusion could possibly exist due to
spatial symmetry breaking. However, further analysis
needed for a better understanding of the mechanisms o
disorder enhanced diffusion.

In summary we have presented numerical evidence
the addition of small amounts of quenched disorder in
equation of motion of a continuous time system can indu
an increase of the diffusion coefficient. We have shown t
the presence of disorder does not change the characte
normal diffusion and that the transport is diffusive. At hig
amounts of disorder the chaotic diffusion is suppressed,
almost all of the trajectories are localized.
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