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Quenched disorder enhances chaotic diffusion

M. N. Popescu, Y. Braiman,F. Family, and H. G. E. Hentschel
Department of Physics, Emory University, Atlanta, Georgia 30322
(Received 28 May 1998

We show that chaotic diffusion of a single particle moving on a one-dimensional rough surface is enhanced
by a small amount of spatial quenched disorder. In addition to enhanced diffusion we also find that there is a
crossover from expanding to bounded motion. The crossover time to bounded motion decreases with increas-
ing disorder, and there exists a threshold value of disorder above which chaotic motion is completely sup-
pressed[S1063-651X98)50210-3

PACS numbes): 81.40.Pq, 46.30.Pa, 05.4%

Understanding the effects of surface roughness on frictiowliffusion induced by the presence of a small amount of
is a long standing and challenging probl¢i2]. For mac- quenched disorder. For the parameter range considered, this
roscopic systems, a rough interface is usually associated witphenomenon is only observed at low amounts of disorder,
an increase in friction due to asperitigd. However, it has and above a certain threshold the chaotic diffusion is sup-
been recently suggest¢8] that on an atomic scale this may pressed.
not be always the case, and that friction can decrease with We consider the one-dimensional motion of a partiate
increased roughness of the surface. Motivated by this obsedimensionless uniison a disordered substrate:
vation, in the present work we study the effects of substrate
randomness on the chaotic diffusive motion of a patrticle in d?x dx .
one dimension. Since the friction coefficient is related to the WJF Y a+sm(x)=1“ sif(wt) + a&(x). 2
diffusion coefficient, studies on the effects of the randomness
on chaotic diffusion will result in a better understanding of Here, y is the damping coefficieni; andw are, respectively,
friction. the amplitude and frequency of an oscillatory forcing, and

Diffusion is observed in many types of deterministic andaé(x) is the force due to the quenched disorder. For the
stochastic systems that exhibit a wide variety of dynamicapresent studyé(x) [ —1,1] are independent, uniformly dis-
behaviord4—13). In deterministic chaotic systems, diffusion tributed random variables with no spatial correlations corre-
can be normal4,13], with the mean-square displacement sponding to a piecewise constant force on the interval
(x?) proportional to timet((x?)~t), anomalous[5,7,14, [2km,2(k+1)7), keZ, and « is the amount of quenched
with (x?)~t”, (enhanced fory>2, dispersive fory<2) or  disorder. Our interest in Eq2) is motivated by the fact that
have a logarithmic time dependence=0) [6,14]. it can serve as a simplistic model for the systems studied in

Among the simplest dynamical systems in which chaoticquartz microbalance experiments]. Clearly, the dynamics
diffusion can be observed are one-dimensional iterated map¥ a sliding monolayer is far more complicated than the dy-
of the form namics of a single particle. However, for a weak substrate

potential and at low coverages, the dynamics of a single

Xnt1=Xpt+F(X,). (1)  particle can provide valuable insight into the motion of a

monolayer on a rough surface. Indeed, phenomenological
Studies of both normal and anomalous chaotic diffusion inmodels[16,17 describing surface force apparatus experi-
such mapgwith additional restrictions off(x) such as pe- ments on confined liquidgl8,19 have revealed important
riodicity and reflection symmetry with respect o —x] properties of the dynamics of the liquid into consideration.
were motivated by the assumption that they capture the es- It has recently been showi3] that in the absence of
sential features of driven, damped diffusive motion in a pe-quenched disordera(=0) normal diffusion is generated in
riodic potentia[4,7,12,14. In many cases the simple form of both the chaotic and intermittent regimes of Eg). The
these maps has made possible both large scale numerigiesence of quenched disorder#0) is assumed to intro-
simulations and analytical calculations of transport properdUCe a more realistic representation of a substrate. Due to
ties[4—8,13. Little is known, however, about the effects of this spatial randomness, the periodicity and symmetry of the
quenched spatial disorder on motion in otherwise periodiginperturbed potential are destroyed. Figure 1 shows a typical

potentials. landscape of the resultant disordered potential,
In this work we report on an unusual effect that occurs in
the case of continuous-time systems, namely, an increase in = X
Y y 000 =~ cos)—a [ “&v)ay. ®

*Present address: Center for Engineering Science Advanced Re- Since quenched disorder modifies the potential, it is natu-
search, Computer Science and Mathematics Division, Oak Ridgeal to ask how it affects chaotic diffusion. The complex
National Laboratory, P.O. Box 2008, Building 6010, MS-6355, Oakstructure of the dynamical phase space corresponding to Eq.
Ridge, TN 37831-6355. (2) in the absence of disord¢i3,2Q indicates the impor-
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FIG. 1. Typical landscape of the disordered potential in (. FIG. 3. Mean-square displacement as a function of time for

for @=10"1. Note that the motion toward righiteft) is more fa- several values of t.he amount of quenched disorder parametédre
vorable atA (C), while atB the potential barrier is almost the same Parameters used in E) are y=0.2,I'=1.2, ando=0.3.
for both directions.
shows typical results for the displacemex(t) for the cases

tance of properly choosing a region in parameter spacdga) a=0 (no disordey, and (b) «=10"1. In the case of
Thus, as a necessary first step, we have identified a set abnzero disorder we observe both trapped and expanding
parameters where, in the absence of disorder, the systetrajectories, depending on the initial conditions and on the
shows chaotic diffusion. Specifically, we selectger 0.2,  specific realization of disorder; in the absence of disorder the
I'=1.2, andw=0.3. We note that simulations done for other trajectories are not trapped. This trapping of the trajectory
sets of parameterdor example, the ones in RfL3]) have inside a bounded region of phase space is one of the mecha-
shown the same qualitative features.

Numerical solutions of Eq2) were obtained using a vari-
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0 1.0 x10° 2.0 x10° FIG. 4. (a) Diffusion coefficientD(a) as a function of the
t amount of quenched disorder; the points are results of the numerical
simulations, the line is a cubic-spline interpolation to guide the eye.
FIG. 2. Characteristic time series for the displacement of a dif-The inset shows the region where the diffusion coefficient is in-
fusing particle described by E¢R) for y=0.2,'=1.2,0=0.3,and  creased by disordetb) Percentage of trapped trajectories as a func-
(@ a=0, (b) «=10"1. The two curves ir(b) correspond to differ-  tion of the amount of quenched disorder; the points are results of
ent initial conditions and different realizations of quenched disor-the numerical simulations, the line is a cubic-spline interpolation to
der. guide the eye. The parameters are the same as in Fig. 2.
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nisms through which quenched disorder affects the transpofsee inset At higher levels of disorder, the diffusion coeffi-
properties. cient decreases toward zero. This decrease, correlated with
To calculate the mean-square displacen{@fft)), aver-  the increase in the trapping probability shown in Figo)4

ages were performed over ensembles of 5000 trajectoridgdicates a crossover from expanding to bounded motion in-
starting from a very small cluster of different initial condi- duced by the quenched disorder. The decrease in diffusion
tions centered around the origix£0, Xx=0) of the phase coefficient W't.h increasing disorder is an expected result
space. For each trajectory a different random sequétde [8,9]. In our simulations, however, we first observe an in-
was generated. In this way, the average over the ensemble gf¢ase of the diffusion coefficient with disorder, and only
trajectories also includes an average over realizations of di‘féN.}-1 en the amount of disorder exceetls 0.1, the decrease of

order. The ensemble described above was left to evolve fo eAﬂlf;l;]S;?gigooififéet?;!:c?gﬁggvggé @) indicates that the
~9400 external drive periods, while trajectories localized in y !

a “trap” for a time lonaer than 750 external drive periods spatial evolution of the statistical ensemble is similar to the
p-Ic ong . P case of Gaussiafstochastit diffusion. We believe that in
were not included in the averaging process. Therefore, th

average mean-square displacement was computed onl 0\/Sur simulations a small amount of quenched disorder can act
9 an-sq P compute Y OVEL a source of thermal noise and increases the escape rates. In
the trajectories that were not trapped during the integrati

. . Or?:1ddition, introduction of a small amount of quenched disor-
time period.

Figure 3 shows results fdx?(t))/2t as a function of the der causes a spatial symmetry breaking that could also lead

time t f [ val £ disord ter At | to an increase in the escape rates and, consequently, in the
Ime 1 lor several values ot disorder parameterat Iong it sion coefficient. This behavior resembles other known
times the above ratio tends to a constant valligy), indi-

) _ systems, such as thermal ratchf®3, kink diffusion [22],
cating that the qugnched disorder does not ch_ange the normgl§ stochastic diffusion with external linear bj28], where
chjlgaggerr?f thf d'fff‘z’)'o.n' we obﬁerve ) :csdlgrgedr for  disordered enhanced diffusion could possibly exist due to the
a=> rf a(;l_ﬁor_a— ' "?f'.’ lsmab amounts o |Isor €r N spatial symmetry breaking. However, further analysis is
crease the diffusion coefficient by approximately 1886e needed for a better understanding of the mechanisms of the
inset in Fig. 4a)]. Higher values of disorder, however, lead

disorder enhanced diffusion.
to a smalleD(«).

h Iso foll dth f d . In summary we have presented numerical evidence that
We 1ave aiso followe t.e center o mass dynamics. FOlhe addition of small amounts of quenched disorder in the
the entire range of realizations of the disorder considere

h lational ; £ th ‘ Al guation of motion of a continuous time system can induce
there was no translational motion of the center of mass. Ay, i rease of the diffusion coefficient. We have shown that

though on short length-scales there was a net currentinducgfle resence of disorder does not change the character of
b_y disorder, the large-scale average of _thls“curf,ent 'S Z€Mormal diffusion and that the transport is diffusive. At high
since the large-scale average of disorder is a “flat S“bStrateamounts of disorder the chaotic diffusion is suppressed, and

and_the transport is by simple _diffu_sion. - almost all of the trajectories are localized.
Figure 4a) shows the diffusion coefficientd («a)

=lim_..((x?)/2t) in the long-time limit as a function of the We would like to thank Dr. Jacques G. Amar for his help-
amount of quenched disorder. These results show that in thfel comments and suggestions on the manuscript. This work
range «<<0.1 there is an increase in diffusion when com-was supported by grants from the U.S. Office of Naval Re-
pared to the diffusion on the periodic, unperturbed surfaceearch and the National Science Foundation.
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